
July 30, 2001 RFLICS Review Meeting 1

University    
of  Southern 
California  

USC

Compound Semiconductor LaboratoryCompound Semiconductor Laboratory

Approved for public release, distribution unlimited

Low Voltage Modulators Based on 
Semiconductor Microresonators

Dan Dapkus
The Photonics Center @ USC



July 30, 2001 RFLICS Review Meeting 2

University    
of  Southern 
California  

USC

Compound Semiconductor LaboratoryCompound Semiconductor Laboratory

Approved for public release, distribution unlimited

Program Concept

• High Q resonators enhance the 
coupling between waveguides.

• Low voltage modulation of the 
resonator Q can modulate the 
power transfer.

• Develop techniques for 
fabricating resonators and 
modulator circuits with Vp ~ 0.1 V.

Q = Qoeiωωωωt

λλλλres

λλλλres
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Technology Output

1. Low Voltage Modulators with low 
insertion loss

2. Vertically coupled WDM component 
technology.

3. Suite of sophisticated modeling tools.
4. Deliverable modulators for system trials.
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Accomplishments to Date

• Analyzed various modulation mechanisms to 
assess potential for program goals.

• Modeled vertically coupled resonator to 
determine device design issues.

• Developed resonator etching to achieve high Q 
resonators – Q > 7000.

• Demonstrated vertically coupled resonators with 
> 95% power coupling. 

These are the highest performance semiconductor 
resonant couplers demonstrated to date.
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Resonator Response
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Modulation Mechanisms

λλλλ
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Resonance Tuning, �n
Electro-optic Effect
Electrorefraction Effect
Free Carrier Plasma Effect

Q Tuning, ��
Electroabsorption 
Gain
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Loss Modulation

• Plotted T and Q vs.  κκκκ
and αααα

• At κκκκ=1.8% and 
ααααbg=3cm-1 we need 
∆α∆α∆α∆α=45cm-1 to have 
CR=10dB

• Higher CR (lower 
drive voltage) will 
require lower 
background losses 
ααααbg
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Electroabsorption Effect

• QCSE –sensitive to the 
applied voltage

• The most important 
issue is the relative 
position of the mode 
and the bandgap λλλλ’s

• Optimization of ∆α∆α∆α∆α/αααα0
• Optimization of the QW 

(the results depends on 
the model used)
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QCSE/QW optimization

• Optimal composition:
� Lw=100A, yw=0.683, λλλλw=1.5µµµµm

• ∆∆∆∆Tmax=0.7, Toff=0.1, CR=10dB
• Vappl=2.6V (depends on the 

lineshape function)

• High bandwidth
• Precise structure tuning
• The losses are detrimental
• Confirmation of the model 

by experiments
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Gain Active Region
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• ααααbg=15cm-1

• ∆∆∆∆n included
• disk laser
• disk modulator

� for CR=10dB
• κκκκ=8%
• ∆∆∆∆g=10cm-1
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Gain vs. Voltage Relationship
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Γ = 0.01 , Nqw= 1 , Rload = 50Ω

R=5µµµµm

R=17µµµµm

R=27µµµµm

• ∆∆∆∆g=10cm-1 can be 
achieved with 
∆∆∆∆V<0.1V

• Easy to achieve
• Bandwidth limited 

by carrier lifetime
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FC injection active region
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• ∆∆∆∆n(I), ∆α∆α∆α∆α(I)
• CR=20dB for 

∆∆∆∆J=80A/cm2

• R=5µµµµm, I=200µµµµA
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Resonator Time Response
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Structure Design

• Vertical vs. lateral geometry
• Coupling coefficient calculation

� Finding the modal field distribution
� Calculation of κκκκ for given structure

• Bus waveguide optimization
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Resonator Designs

�Air coupling and guiding.

�Difficult to integrate active and

passive elements

�Submicron control of coupling.

�Submicron waveguide widths.

�Control of waveguide and 

resonator wall smoothness.

Lateral Coupling Vertical Coupling

�Epilayer coupling.
�Integration of active and passive

structures. 
�Control coupling by epilayer

thickness.
�Flexible single mode waveguide 

design.
�Separates resonator and

coupler fabrication
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Modal fields distribution

Disk:

Bus 
waveguide:
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Coupling Coefficient

• Choose the dimensions to suppress the cross-coupling
• Single mode waveguides and mode-matching
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Waveguide optimization

• Best coupling at phase-matched 
conditions

• The best suppression of cross-
coupling is at w=0.6µµµµm, for this 
geometry

• Varying the width of the bus 
changes the mode index

• Phase matching at w=0.35µµµµm, for 
the particular geometry
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Technology Objectives

Uniform resonator potential / current flow
Single mode waveguides
Coupling to single resonator mode
Low loss couplers to fiber



July 30, 2001 RFLICS Review Meeting 20

University    
of  Southern 
California  

USC

Compound Semiconductor LaboratoryCompound Semiconductor Laboratory

Approved for public release, distribution unlimited

Loss and Q Control

• Assess residual absorption in resonator

�Minimize scattering at edges

�Design controlled coupling

• Minimize insertion loss

• Optimize mode matching
Mode couplers in design
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• High Q resonators have been developed by 
careful optimization of the dry etching.

• Coupling controlled Q’s have been achieved 
with vertically coupled structures.
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Process Flow

•Epitaxial Growth
•Waveguide Definition
•Wafer Bonding
•Substrate Removal
•Resonator Definition
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High Q Resonators



July 30, 2001 RFLICS Review Meeting 23

University    
of  Southern 
California  

USC

Compound Semiconductor LaboratoryCompound Semiconductor Laboratory

Approved for public release, distribution unlimited

Coupling Limited Q’s
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•Q is strongly dependent
on vertical separation.

� Critically coupled structures
•Resonance depth varies from
sample to sample.
�Lateral alignment is variable
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Most Significant Accomplishment
0.22 nm Linewidth Resonator

•Highest Q InP Resonator 
Demonstrated.

• > 90% power transfer.

• Critically coupled 
system.
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Previously DemonstratedPreviously Demonstrated
µµ Disk Resonant ComponentsDisk Resonant Components

1560155015401530

Wavelength, nm

2

6

20

60

Si
gn

al
 In

te
ns

ity
 (a

rb
 u

ni
ts

)

Passive Passive µµµµµµµµ disk couplerdisk coupler

Active Active µµµµµµµµ disk disk 
tunable filter / switchtunable filter / switch

Tr
an

sm
itt

ed
 P

ow
er

6 
8 

0.1

2 

4 

6 
8 

1
No bias

Biased to transparency

Wavelength (nm)
1530    1540      1550      1560      1570



July 30, 2001 RFLICS Review Meeting 26

University    
of  Southern 
California  

USC

Compound Semiconductor LaboratoryCompound Semiconductor Laboratory

Approved for public release, distribution unlimited

Deficiencies of Previous Designs

• Disk resonator and waveguides are multimode. This 
leads to closely spaced and degenerate resonances.

Resolved in this program
• Resonators are suspended. This leads to poor 
uniformity of applied potential or current and poor 
heat sinking. Resolved in this program

• Resonator Q’s are too low to support low voltage 
modulators. Resolved in this program

• Chip edge feedback is too large and must be reduced.
Resolved in this program
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Program Roadmap
• Task 1 Modeling of Modulator Design and Characteristics

� Preliminary designs of EA and ER modulators. 3Q
� Theoretically optimized coupling design. 8Q  

• Task 2 Modulator Fabrication Technology Advancement
� Resonator fabrication approach chosen. 4Q
� Fabrication process optimized. 8Q
� Vertical Integration approach choice.  10Q

• Task 3 Modulator Optimization
� Residual loss near EG characterized vs λλλλ. 3Q
� EA vs. ER choice made. 8Q
� Ring vs Disk scattering loss measurement. 4Q
� Measurement of Q-limited modulation limit. 10Q
� Low resistance contact demonstrated. 4Q
� Air bridge technology demonstration. 10Q

• Task 4 Modulator Demonstration, Characterization and Delivery
� DC characterization setup complete. 4Q
� High frequency modulation characterization setup complete. 6Q
� Eight (8) low Vππππ modulators delivered in years 1-3 according to selected 

integrator. 12Q 


